Logo des Repositoriums
 

Proof of concept for a new battery sorting method based on deep learning image classification

dc.contributor.authorBlum, Fridolin
dc.contributor.authorWieczorek, Nils
dc.contributor.authorStelldinger, Peer
dc.contributor.editorWohlgemuth, Volker
dc.contributor.editorKranzlmüller, Dieter
dc.contributor.editorHöb, Maximilian
dc.date.accessioned2023-12-15T09:22:25Z
dc.date.available2023-12-15T09:22:25Z
dc.date.issued2023
dc.description.abstractBattery recycling requires efficient sorting based on chemical composition. Traditional methods like X-Ray or Electromagnetic Sensors lack automation, with X-Ray sorting 26 batteries and electromagnetic sorting only 6 batteries per second. We propose using deep learning image classification to detect battery manufacturer and product series. Our prototype includes a conveyor belt, webcam, ring light, and Nvidia Jetson AGX Orin. With a dataset of 9 battery series, we achieved over 99% validation accuracy using a pretrained MobileNetV2 model. The model can classify 50 images per second with limited hardware. This approach offers potential for automated sorting, significantly improving recycling throughput and efficiency. Further research should expand the dataset and explore applicability to other battery types, optimizing the model and hardware configuration.en
dc.identifier.doi10.18420/env2023-003
dc.identifier.isbn978-3-88579-736-4
dc.identifier.pissn1617-5468
dc.identifier.urihttps://dl.gi.de/handle/20.500.12116/43351
dc.language.isoen
dc.publisherGesellschaft für Informatik e.V.
dc.relation.ispartofEnviroInfo 2023
dc.relation.ispartofseriesLecture Notes in Informatics (LNI) - Proceedings, Volume P-342
dc.subjectbattery recycling; deep learning; image classification
dc.titleProof of concept for a new battery sorting method based on deep learning image classificationen
dc.typeText/Conference Paper
gi.citation.endPage44
gi.citation.publisherPlaceBonn
gi.citation.startPage35
gi.conference.date11.-13. Oktober 2023
gi.conference.locationGarching, Germany
gi.conference.reviewfull
gi.conference.sessiontitleEnvironmentalMonitoringandSensingTechnologies

Dateien

Originalbündel
1 - 1 von 1
Lade...
Vorschaubild
Name:
GI_Proceedings_342_Digital_Paper_3.pdf
Größe:
350.13 KB
Format:
Adobe Portable Document Format