MCI Dissertationen (Open Access)
In diesem Bereich sammeln wir (Verweise auf) Dissertationen zu MCI-Themen.
Auflistung MCI Dissertationen (Open Access) nach Titel
1 - 10 von 28
Treffer pro Seite
Sortieroptionen
- Dissertation3D User Interfaces for Interventional Support and Medical Education(2018) Saalfeld, PatrickSpatial user interfaces hold the opportunity to improve the interaction with medical structures in several domains. This thesis presents spatial input and output devices as well as interaction techniques that support physicians during interventions, students and teachers in medical education, and patients and physicians during patient education. Physicians are supported with freehand gestures that are used as a touchless interaction technique to control interventional imaging software. This enables them to investigate patient’s radiographic scans during interventions in a sterile manner. Patient education, medical teaching and therapy planning are supported with the natural interaction technique of sketching. Here, approaches are presented to sketch vascular structures, pathologies, treatment options and blood flow in real-time, either as 2D or 3D structures. For this purpose, an interactive whiteboard and a spatial input and output device is used (namely the zSpace). Furthermore, this thesis presents general guidelines for the evaluation of interactive medical visualizations. This comprises quantitative and qualitative methods, directives for the collection of data, the definition of tasks and experimental designs as well as the selection of appropriate statistical tests. The conducted evaluations within this thesis follow these guidelines, which allows to assess them with quantitative and qualitative aspects. The presented prototypes show the potential for touchless interaction with medical image data, the chance to support patients in understanding the impact of different treatment strategies, and the opportunity in helping students to learn particularities and spatial relationships of vascular configurations.
- DissertationAffective automotive user interfaces(2020) Braun, MichaelTechnological progress in the fields of ubiquitous sensing and machine learning has been fueling the development of user-aware human-computer interaction in recent years. Especially natural user interfaces, like digital voice assistants, can benefit from understanding their users in order to provide a more naturalistic experience. Such systems can, for example, detect the emotional state of users and accordingly act in an empathic way. One major research field working on this topic is Affective Computing, where psycho-physiological measures, speech input, and facial expressions are used to sense human emotions. Affective data allows natural user interfaces to respond to emotions, providing promising perspectives not only for user experience design but also for safety aspects. In automotive environments, informed estimations of the driver’s state can potentially avoid dangerous errors and evoking positive emotions can improve the experience of driving. This dissertation explores Affective Automotive User Interfaces using two basic interaction paradigms: firstly, emotion regulation systems react to the current emotional state of the user based on live sensing data, allowing for quick interventions. Secondly, emotional interaction synthesizes experiences which resonate with the user on an emotional level. The constituted goals of these two interaction approaches are the promotion of safe behavior and an improvement of user experience. Promoting safe behavior through emotion regulation: Systems which detect and react to the driver’s state are expected to have great potential for improving road safety. This work presents a model and methods needed to investigate such systems and an exploration of several approaches to keep the driver in a safe state. The presented methods include techniques to induce emotions and to sample the emotional state of drivers. Three driving simulator studies investigate the impacts of emotionaware interventions in the form of implicit cues, visual mirroring and empathic speech synthesis. We envision emotion-awareness as a safety feature which can detect if a driver is unfit or in need of support, based on the propagation of robust emotion detection technology. Improving user experience with emotional interaction: Emotional perception is an essential part of user experience. This thesis entails methods to build emotional experiences derived from a variety of lab and simulator studies, expert feedback, car-storming sessions and design thinking workshops. Systems capable of adapting to the user’s preferences and traits in order to create an emotionally satisfactory user experience do not require the input of emotion detection. They rather create value through general knowledge about the user by adapting the output they generate. During this research, cultural and generational influences became evident, which have to be considered when implementing affective automotive user interfaces in future cars. We argue that the future of user-aware interaction lies in adapting not only to the driver’s preferences and settings but also to their current state. This paves the way for the regulation of safe behavior, especially in safety-critical environments like cars, and an improvement of the driving experience.
- DissertationBehaviour-aware mobile touch interfaces(2018) Buschek, DanielMobile touch devices have become ubiquitous everyday tools for communication, information, as well as capturing, storing and accessing personal data. They are often seen as personal devices, linked to individual users, who access the digital part of their daily lives via hand-held touchscreens. This personal use and the importance of the touch interface motivate the main assertion of this thesis: Mobile touch interaction can be improved by enabling user interfaces to assess and take into account how the user performs these interactions. This thesis introduces the new term "behaviour-aware" to characterise such interfaces. These behaviour-aware interfaces aim to improve interaction by utilising behaviour data: Since users perform touch interactions for their main tasks anyway, inferring extra information from said touches may, for example, save users' time and reduce distraction, compared to explicitly asking them for this information (e.g. user identity, hand posture, further context). Behaviour-aware user interfaces may utilise this information in different ways, in particular to adapt to users and contexts. Important questions for this research thus concern understanding behaviour details and influences, modelling said behaviour, and inference and (re)action integrated into the user interface. In several studies covering both analyses of basic touch behaviour and a set of specific prototype applications, this thesis addresses these questions and explores three application areas and goals: 1) Enhancing input capabilities – by modelling users' individual touch targeting behaviour to correct future touches and increase touch accuracy. The research reveals challenges and opportunities of behaviour variability arising from factors including target location, size and shape, hand and finger, stylus use, mobility, and device size. The work further informs modelling and inference based on targeting data, and presents approaches for simulating touch targeting behaviour and detecting behaviour changes. 2) Facilitating privacy and security – by observing touch targeting and typing behaviour patterns to implicitly verify user identity or distinguish multiple users during use. The research shows and addresses mobile-specific challenges, in particular changing hand postures. It also reveals that touch targeting characteristics provide useful biometric value both in the lab as well as in everyday typing. Influences of common evaluation assumptions are assessed and discussed as well. 3) Increasing expressiveness – by enabling interfaces to pass on behaviour variability from input to output space, studied with a keyboard that dynamically alters the font based on current typing behaviour. Results show that with these fonts users can distinguish basic contexts as well as individuals. They also explicitly control font influences for personal communication with creative effects. This thesis further contributes concepts and implemented tools for collecting touch behaviour data, analysing and modelling touch behaviour, and creating behaviour-aware and adaptive mobile touch interfaces. Together, these contributions support researchers and developers in investigating and building such user interfaces. Overall, this research shows how variability in mobile touch behaviour can be addressed and exploited for the benefit of the users. The thesis further discusses opportunities for transfer and reuse of touch behaviour models and information across applications and devices, for example to address tradeoffs of privacy/security and usability. Finally, the work concludes by reflecting on the general role of behaviour-aware user interfaces, proposing to view them as a way of embedding expectations about user input into interactive artefacts.
- DissertationCommunityMirrors: Interaktive Großbildschirme als ubiquitäre Natural User Interfaces für Kooperationssysteme(2018) Ott, FlorianSteigende Komplexität informatisierter Geschäftsprozesse sowie zunehmende Durchdringung unseres Alltags mit Smartphones und Tablets für den allgegenwärtigen Zugriff auf Internetdienste und Kooperationssysteme haben zur fast vollständigen Digitalisierung unserer Wissensgesellschaft beigetragen. Neben ihren vielen Vorteilen für die individuelle Informationsversorgung fördern ubiquitäre Benutzerschnittstellen jedoch die bildschirmbasierte Separation sozialer Akteure und damit digitale Vereinsamung. Interaktive Großbildschirme können in diesem Spannungsfeld aufgrund ihrer physischen Ausmaße und der daraus resultierenden gleichzeitigen „geteilten“ Nutzbarkeit durch mehrere Personen einen Betrag zur Resozialisierung der Wissensarbeit leisten, z. B. beim kommunikativen gemeinsamen Stöbern in Informationsräumen oder dem kooperativen Erarbeiten von Inhalten. Auch für die periphere Informationsversorgung im Vorübergehen bieten sie großes Potenzial, jedoch wird dies bisher primär von passiven Advertising Displays im öffentlichen Raum für die Anzeige von Werbung genutzt. Im Unternehmenskontext fehlen Displays, die Informationen aus kollaborativen Wissensprozessen an halb-öffentlichen Orten, wie Kaffee-Ecken, neben dem Aufzug oder vor frequentierten Gruppenräumen, interaktiv sichtbar, greifbar und gemeinsam erlebbar machen. Eine wesentliche Ursache der fehlenden Nutzung ist die soziotechnischen Komplexität der erforderlichen halb-öffentlichen synchron-kolozierten Mehrbenutzerinteraktion mit einem Großbildschirm. Für eine längerfristig nutzenstiftende Anwendungsentwicklung ist nicht ausreichend klar, welche konkreten Potenziale der Systemeinsatz für die Verbesserung der Informationsversorgung in kollaborativen Wissensprozessen bieten kann und wie der halb-öffentliche Interaktionskontext dafür gestaltet werden muss. Wichtige Erkenntnisse hierzu sind über verschiedene Forschungsbereiche gestreut und verwenden z. T. gänzlich unterschiedliche Terminologien, wodurch der Praxistransfer erschwert wird. Hier setzt die vorliegende Forschungsarbeit an und stellt sich die Frage, welche soziotechnischen Gestaltungsparameter beim Einsatz interaktiver Großbildschirme als halb-öffentliche ubiquitäre Natural User Interfaces in kollaborativen Wissensprozessen existieren und wie diese sowie ihre potenziellen Auswirkungen auf die Wissensarbeit in einem interdisziplinär verständlichen konzeptionellen Systemmodell beschrieben werden können. Zur Komplexitätsreduktion beschäftigt sich die Arbeit zunächst mit der argumentativ-deduktiven Aufarbeitung der zentralen Komponenten des soziotechnischen Systems kollaborativer Wissensprozesse und halb-öffentlicher interaktiver Großbildschirme aus Makro- und Mikroperspektive in Form terminologischer Definitionen sowie grafischer Visualisierungen. Auf Basis mehrerer explorativer Technology Probes mit einem dafür implementierten technischen Framework untersucht die Arbeit anschließend in realen Einsatzszenarien die Gestaltungsparameter und Nutzungspotenziale des Systemeinsatzes und dokumentiert diese in einem interdisziplinär verständlichen soziotechnischen Interaktionskontextmodell.
- DissertationDesigning communication technologies based on physiological sensing(2018) Hassib, MariamThe human body, that marvelous chamber of secrets, reveals myriads of information about its owner’s physical, psychological, emotional and cognitive state. In the last century, scientists in the medical field achieved huge leaps in identifying, collecting and analysing of signals generated inside the human brain and body.The advancement in the technology of sensing and collecting those physiological signals has finally matured enough; making the mysterious human body a more attainable source of information to regular non-trained users. Research in the field of Human Computer Interaction has always looked for new ways to interface between humans and machines.With the help of physiological sensing, a new channel of information originating inside the human body becomes available. The opportunities this new channel provides are limitless. In this thesis we take this opportunity to look at our own bodies as a source of information, to better understand ourselves, and others. In a world where partners and friends are in long-distance relationships, meeting rooms are distributed over cities, and working teams are remote, efficient communication mediated over a distance becomes crucial. We see our bodies as a direct interface for communication: our heartbeats reveal how excited we are, our brain reveals how focused we are, and our skin reveals how stressed we are. How can we use this information to create an implicit communication channel between people? Can we increase empathy, connectedness, and awareness, if we include the body as a source of information in our communication systems? What are the ethical and social implications of this type of novel sensing and sharing of information? These are some of the questions this thesis is concerned with. The field of Computer Mediated Communication (CMC) has a long rich history. In this work, we extend on the means of mediating communication to include the body at the source, and the sink, of a communication system. Through a user-centred design process, we first start with a requirements gathering stage in which we investigate the expectations of users towards implicit physiological sensing and sharing of information. We build on top of existing CMC concepts to include bio-signals of the human body within communication.We chart our view of an extensive design space that includes implicit sensing opportunities and dimensions that consider new trends in communication including the distribution and remoteness of users. Through a set of research probes, ordered by one dimension of our extended design space, namely the number of senders and receivers, we explore how signals from the human body can be collected, visualized, and communicated. Starting with self-reflection as a form of communication, we look into how the revealing of information about one’s own body to oneself can enhance their understanding and interaction with systems in different contexts. Using electroencephalography signals from the frontal lobe of the brain, we build a system that aims to aid information workers in understanding how their attention varies during different tasks, and aids in scheduling and increased awareness. In a second research probe, we investigate the effect of revealing affective valence information collected through heart rate and electroencephalography to car drivers and its impact on driving performance. Looking at one-to-one personal communication, comprising the bigger part of our 21st century relationships, we develop two probes which use intimate information collected from the human body to enhance empathy, awareness and connectedness. We explore ways to visualize and communicate heart rate in online chat scenarios and how users deal with such an intimate yet ambiguous source of information. In another probe we introduce the idea of, not only implicitly sensing emotions as an input from one sender, but also using an actuating component at the output side of the communication channel. We explain and develop our concept of embodied emotion actuation using electroencephalography on one side and electrical muscle stimulation on the receiver’s side to enhance the connection between communicating partners. Communication in the large, with multiple senders and receivers who may be distributed or collocated over time and place, is the subject of our final set of research probes. Here we explored the area of audience sensing using physiological sensors to provide feedback to presenters or stakeholders. In two probes we investigated the use of electroencephalography to collect feedback from multiple audiences, in collocated, or distributed scenarios. In one probe, presenters can view real-time or post-hoc feedback to their presented material to evaluate and enhance it. In the second probe, visitors in a museum can implicitly rate their interest in exhibits which can be used by museum curators for better understanding of their audience. Finally, throughout our developed and evaluated research probes we reflect back on the design space presented in the beginning. We derive implications and recommendations for design as well as a conceptual architecture for physiologically augmented communication. We dedicate a discussion to the ethical and social implications of implicit physiological communication derived through our field and lab evaluations of our developed probes.We conclude with a vision of computer mediated communication for the next 20 years and discuss opportunities of future work.
- DissertationDesigning communication technologies based on physiological sensing(2018) Hassib, MariamThe human body, that marvelous chamber of secrets, reveals myriads of information about its owner’s physical, psychological, emotional and cognitive state. In the last century, scientists in the medical field achieved huge leaps in identifying, collecting and analysing of signals generated inside the human brain and body.The advancement in the technology of sensing and collecting those physiological signals has finally matured enough; making the mysterious human body a more attainable source of information to regular non-trained users. Research in the field of Human Computer Interaction has always looked for new ways to interface between humans and machines.With the help of physiological sensing, a new channel of information originating inside the human body becomes available. The opportunities this new channel provides are limitless. In this thesis we take this opportunity to look at our own bodies as a source of information, to better understand ourselves, and others. In a world where partners and friends are in long-distance relationships, meeting rooms are distributed over cities, and working teams are remote, efficient communication mediated over a distance becomes crucial. We see our bodies as a direct interface for communication: our heartbeats reveal how excited we are, our brain reveals how focused we are, and our skin reveals how stressed we are. How can we use this information to create an implicit communication channel between people? Can we increase empathy, connectedness, and awareness, if we include the body as a source of information in our communication systems? What are the ethical and social implications of this type of novel sensing and sharing of information? These are some of the questions this thesis is concerned with. The field of Computer Mediated Communication (CMC) has a long rich history. In this work, we extend on the means of mediating communication to include the body at the source, and the sink, of a communication system. Through a user-centred design process, we first start with a requirements gathering stage in which we investigate the expectations of users towards implicit physiological sensing and sharing of information. We build on top of existing CMC concepts to include bio-signals of the human body within communication.We chart our view of an extensive design space that includes implicit sensing opportunities and dimensions that consider new trends in communication including the distribution and remoteness of users. Through a set of research probes, ordered by one dimension of our extended design space, namely the number of senders and receivers, we explore how signals from the human body can be collected, visualized, and communicated. Starting with self-reflection as a form of communication, we look into how the revealing of information about one’s own body to oneself can enhance their understanding and interaction with systems in different contexts. Using electroencephalography signals from the frontal lobe of the brain, we build a system that aims to aid information workers in understanding how their attention varies during different tasks, and aids in scheduling and increased awareness. In a second research probe, we investigate the effect of revealing affective valence information collected through heart rate and electroencephalography to car drivers and its impact on driving performance. Looking at one-to-one personal communication, comprising the bigger part of our 21st century relationships, we develop two probes which use intimate information collected from the human body to enhance empathy, awareness and connectedness. We explore ways to visualize and communicate heart rate in online chat scenarios and how users deal with such an intimate yet ambiguous source of information. In another probe we introduce the idea of, not only implicitly sensing emotions as an input from one sender, but also using an actuating component at the output side of the communication channel. We explain and develop our concept of embodied emotion actuation using electroencephalography on one side and electrical muscle stimulation on the receiver’s side to enhance the connection between communicating partners. Communication in the large, with multiple senders and receivers who may be distributed or collocated over time and place, is the subject of our final set of research probes. Here we explored the area of audience sensing using physiological sensors to provide feedback to presenters or stakeholders. In two probes we investigated the use of electroencephalography to collect feedback from multiple audiences, in collocated, or distributed scenarios. In one probe, presenters can view real-time or post-hoc feedback to their presented material to evaluate and enhance it. In the second probe, visitors in a museum can implicitly rate their interest in exhibits which can be used by museum curators for better understanding of their audience. Finally, throughout our developed and evaluated research probes we reflect back on the design space presented in the beginning. We derive implications and recommendations for design as well as a conceptual architecture for physiologically augmented communication. We dedicate a discussion to the ethical and social implications of implicit physiological communication derived through our field and lab evaluations of our developed probes.We conclude with a vision of computer mediated communication for the next 20 years and discuss opportunities of future work.
- DissertationDesigning for empowerment: an exploration and critical reflection(2018) Schneider, HannaTechnology bears the potential to empower people - to help them tackle challenges they would otherwise give up on or not even try, to make experiences possible they did not have access to before. One type of such technologies - the application area of this thesis - is health and wellbeing technology (HWT), such as digital health records, physical activity trackers, or digital fitness coach applications. HWTs often claim to empower people to live healthier and happier lives. However, there is reason to challenge and critically reflect on these claims and underlying assumptions as more and more researchers are finding that technologies aiming or claiming to be empowering often turn out to be disempowering. This critical reflection is the starting point of this thesis: Can HWTs really empower people in their everyday lives? If so, how should we go about designing them to foster empowerment and avoid disempowerment? To this aim, this thesis makes three main contributions: First, it presents a framework of empowering technologies that aims to introduce conceptual and terminological clarity of empowerment in the field of Human-Computer Interaction (HCI). As a literature review conducted for this thesis reveals, the understandings of empowerment in HCI diverge substantially, rendering the term a subsumption of diverse research endeavors. The presented framework is informed by the results of the literature review as well as prior work on empowerment in social sciences, psychology, and philosophy. It aims to help other researchers to analyze conceptual differences between their own work and others’ and to position their research projects. In the same way, this thesis uses the proposed framework to analyze and reflect on the conducted case studies. Second, this thesis explores how HWT can empower people in a number of studies. Technologies that are investigated in these studies are divided into three interaction paradigms (derived from Beaudouin-Lafon’s interaction paradigms): Technologies that follow the computer-as-tool paradigm include patient-controlled electronic health records, and physical activity trackers; technologies in the computer-as-partner paradigm include personalized digital fitness coaches; and technologies in the computer-as-intelligent-tool paradigm includes transparently designed digital coaching technology. For each of these paradigms, I discuss benefits and shortcomings, as well as recommendations for future work. Third, I explore methods for designing and evaluating empowering technology. Therefore, I analyze and discuss methods that have been used in the different case studies to inform the design of empowering technologies such as interviews, observations, personality tests, experience sampling, or the Theory of Planned Behavior. Further, I present the design and evaluation of two tools that aimed to help researchers and designers evaluate empowering technologies by eliciting rich, contextualized feedback from users and fostering an empathic relationship between users and designers. I hope that my framework, design explorations, and evaluation tools will serve research on empowering technologies in HCI to develop a more grounded understanding, a clear research agenda, and inspire the development of a new class of empowering HWTs.
- DissertationDesigning gaze-based interaction for pervasive public displays(2018) Khamis, MohamedThe last decade witnessed an increasing adoption of public interactive displays. Displays can now be seen in many public areas, such as shopping malls, and train stations. There is also a growing trend towards using large public displays especially in airports, urban areas, universities and libraries. Meanwhile, advances in eye tracking and visual computing promise straightforward integration of eye tracking on these displays for both: 1) monitoring the user's visual behavior to evaluate different aspects of the display, such as measuring the visual attention of passersby, and for 2) interaction purposes, such as allowing users to provide input, retrieve content, or transfer data using their eye movements. Gaze is particularly useful for pervasive public displays. In addition to being natural and intuitive, eye gaze can be detected from a distance, bringing interactivity to displays that are physically unreachable. Gaze reflects the user's intention and visual interests, and its subtle nature makes it well-suited for public interactions where social embarrassment and privacy concerns might hinder the experience. On the downside, eye tracking technologies have traditionally been developed for desktop settings, where a user interacts from a stationary position and for a relatively long period of time. Interaction with public displays is fundamentally different and hence poses unique challenges when employing eye tracking. First, users of public displays are dynamic; users could approach the display from different directions, and interact from different positions or even while moving. This means that gaze-enabled displays should not expect users to be stationary at a specific position, but instead adapt to users' ever-changing position in front of the display. Second, users of public displays typically interact for short durations, often for a few seconds only. This means that contrary to desktop settings, public displays cannot afford requiring users to perform time-consuming calibration prior to interaction. In this publications-based dissertation, we first report on a review of challenges of interactive public displays, and discuss the potential of gaze in addressing these challenges. We then showcase the implementation and in-depth evaluation of two applications where gaze is leveraged to address core problems in today's public displays. The first presents an eye-based solution, EyePACT, that tackles the parallax effect which is often experienced on today's touch-based public displays. We found that EyePACT significantly improves accuracy even with varying degrees of parallax. The second is a novel multimodal system, GTmoPass, that combines gaze and touch input for secure user authentication on public displays. GTmoPass was found to be highly resilient to shoulder surfing, thermal attacks and smudge attacks, thereby offering a secure solution to an important problem on public displays. The second part of the dissertation explores specific challenges of gaze-based interaction with public displays. First, we address the user positioning problem by means of active eye tracking. More specifically, we built a novel prototype, EyeScout, that dynamically moves the eye tracker based on the user's position without augmenting the user. This, in turn, allowed us to study and understand gaze-based interaction with public displays while walking, and when approaching the display from different positions. An evaluation revealed that EyeScout is well perceived by users, and improves the time needed to initiate gaze interaction by 62% compared to state-of-the-art. Second, we propose a system, Read2Calibrate, for calibrating eye trackers implicitly while users read text on displays. We found that although text-based calibration is less accurate than traditional methods, it integrates smoothly while reading and thereby more suitable for public displays. Finally, through our prototype system, EyeVote, we show how to allow users to select textual options on public displays via gaze without calibration. In a field deployment of EyeVote, we studied the trade-off between accuracy and selection speed when using calibration-free selection techniques. We found that users of public displays value faster interactions over accurate ones, and are willing to correct system errors in case of inaccuracies. We conclude by discussing the implications of our findings on the design of gaze-based interaction for public displays, and how our work can be adapted for other domains apart from public displays, such as on handheld mobile dev
- DissertationA European Perspective on Crisis Informatics: Citizens’ and Authorities’ Attitudes Towards Social Media for Public Safety and Security(2022) Reuter, ChristianMobilising helpers in the event of a flood or letting friends know that you are okay in the event of a terrorist attack – more and more people are using social media in emergency, crisis or disaster situations. Storms, floods, attacks or pandemics (esp. COVID-19) show that citizens use social media to inform themselves or to coordinate. This book presents qualitative and quantitative studies on the attitudes of emergency services and citizens in Europe towards social media in emergencies. Across the individual sub-studies, almost 10,000 people are surveyed including representative studies in the Netherlands, Germany, the UK and Italy. The work empirically shows that social media is increasingly important for emergency services, both for prevention and during crises; that private use of social media is a driving force in shaping opinions for organisational use; and that citizens have high expectations towards authorities, especially monitoring social media is expected, and sometimes responses within one hour. Depending on the risk culture, the data show further differences, e.g. whether the state (Germany) or the individual (Netherlands) is seen as primarily responsible for coping with the situation.
- DissertationExploration of smart infrastructure for drivers of autonomous vehicles: design space, out-of-view visualization and explanations(2020) Wiegand, GesaThe connection between vehicles and infrastructure is an integral part of providing autonomous vehicles information about the environment. Autonomous vehicles need to be safe and users need to trust their driving decision. When smart infrastructure information is integrated into the vehicle, the driver needs to be informed in an understandable manner what the smart infrastructure detected. Nevertheless, interactions that benefit from smart infrastructure have not been the focus of research, leading to knowledge gaps in the integration of smart infrastructure information in the vehicle. For example, it is unclear, how the information from two complex systems can be presented, and if decisions are made, how these can be explained. Enriching the data of vehicles with information from the infrastructure opens unexplored opportunities. Smart infrastructure provides vehicles with information to predict traffic flow and traffic events. Additionally, it has information about traffic events in several kilometers distance and thus enables a look ahead on a traffic situation, which is not in the immediate view of drivers. We argue that this smart infrastructure information can be used to enhance the driving experience. To achieve this, we explore designing novel interactions, providing warnings and visualizations about information that is out of the view of the driver, and offering explanations for the cause of changed driving behavior of the vehicle. This thesis focuses on exploring the possibilities of smart infrastructure information with a focus on the highway. The first part establishes a design space for 3D in-car augmented reality applications that profit from smart infrastructure information. Through the input of two focus groups and a literature review, use cases are investigated that can be introduced in the vehicle's interaction interface which, among others, rely on environment information. From those, a design space that can be used to design novel in-car applications is derived. The second part explores out-of-view visualizations before and during take over requests to increase situation awareness. With three studies, different visualizations for out-of-view information are implemented in 2D, stereoscopic 3D, and augmented reality. Our results show that visualizations improve the situation awareness about critical events in larger distances during take over request situations. In the third part, explanations are designed for situations in which the vehicle drives unexpectedly due to unknown reasons. Since smart infrastructure could provide connected vehicles with out-of-view or cloud information, the driving maneuver of the vehicle might remain unclear to the driver. Therefore, we explore the needs of drivers in those situations and derive design recommendations for an interface which displays the cause for the unexpected driving behavior. This thesis answers questions about the integration of environment information in vehicles'. Three important aspects are explored, which are essential to consider when implementing use cases with smart infrastructure in mind. It enables to design novel interactions, provides insights on how out-of-view visualizations can improve the drivers' situation awareness and explores unexpected driving situations and the design of explanations for them. Overall, we have shown how infrastructure and connected vehicle information can be introduced in vehicles' user interface and how new technology such as augmented reality glasses can be used to improve the driver's perception of the environment.
- «
- 1 (current)
- 2
- 3
- »